CHOOSE THE RIGHT INTRA OCULAR LENS

G. SALLET, M.D., FEBO
OOG INSTITUUT AALST
Decisions to make

- Hydrophylic – Hydrophobic
- Design
 - Square - round edge optic
 - Haptic design – Plate haptic
- Spherical – Aspherical
- Full transparent – Blue blocking
- Spherical – Toric
- Accomodative
- Monofocal – Multifocal
 - Refractive - Diffractive
- Extended depth of focus
LENS DESIGN : MATERIAL & ISSUES

- **Material:**
 - Hydrophylic (acrylic/PMMA) contains water
 - Hydrophobic (acrylic or silicone) resists water

- **Design:** square optic edge (prevent PCO)

- **Haptic**
 - prevent tilting, movement of IOL (capsular fibrosis)
 - posterior capsule striae & folds

- **Problems to avoid:**
 - PCO (capsular biocompatibility)
 - foreign body reaction (uveal biocompatibility)
In search of the perfect optic: Asphericity

- Minimize spherical aberrations
- Minimize tilting (Coma)
- One focal point
- Crystal clear image
- Better contrast sensitivity
Aging of the eye

Normal cornea
- 0 to pos sph aberr 0.33u
- Stable throughout life

Crystalline lens
- Young age
 - Negative sph aberrations
 - Better contrast sensitivity
- Older age
 - Increase of sph aberr
 - Pos sph aberration
 - Less contrast sensitivity
Aging of the eye

Normal cornea
- 0 to pos sph aberr 0.33u
- stable throughout life

Myopic LASIK
- positive spherical aberrations

Hyperopic LASIK
- negative spherical aberrations

Crystalline lens
- Young age
 - Negative sph aberrations
 - Better contrast sensitivity
- Older age
 - Increase of sph aberr
 - Pos sph aberration
 - Less contrast sensitivity
Asphericity of IOL’s

- **Comea**
 - Hyperopic LASIK
 - Neg sph aberr
 - Normal cornea
 - 0-0.33u pos sph aberr
 - Myopic LASIK
 - pos sph aberr >0.3u

- **Intra-ocular lenses**
 - → standard spherical IOL
 - Positive sph aberr
 - → aspheric IOL
 - Neutral to neg sph aberr
 - Akreos (B&L) 0 sph aberr
 - Tecnis (Abbott) -0.27
 - Acrysof IQ (Alcon) -0.20
In search of the perfect optic
Asphericity

- Minimize spherical aberrations
 - → one focal point
 - → crystal clear image
 - → better contrast sensitivity

- Decreases depth of focus
 - → less intermediate & near vision
Presbyopia correction with IOL

- Monovision
- Accomodative
- Extended depth of focus
- Multifocal
Monovision

- dominant eye distance / non-dominant -1.25
- Price issue
- Less glare/halo but loss of stereopsis
Accomodative or pseudo-accommodative IOL

- Optic shift: 3D needs movement of 2.2mm -
- Forward-backward axial movement of IOL
- Flexibility in lens thickness
- Problems:
 - Current technology, not enough accommodative effect to provide functional near vision
 - Capsular fibrosis
 - Aging ciliary muscle not enough muscular force?
 - Posterior capsular opacification
 - Asymmetrical vaulting and tilting
NEW aberrated IOLs:

- Extended Depth Of Focus IOL (EDOF)
- Multifocal IOL
Extended depth of focus (EDOF)

- First EDOF: Monofocal with positive spherical aberration
- Mini-Well (SIFI) : 3 zones of different asphericity giving continuous vision
- WIOL-CF : Wichterle IOL Continuus Focus
 - Negative spherical aberrations
 - Mimics natural lens
 - Polyfocality
 - Hydrogel to mimic natural lens
Refractive Cataract Surgery: Extended depth of focus (EDOF)

- Diffractive: AT-Lara (Zeiss) / Symfony (Abbott)
 - Modification of height, spacing and profiles of echelette → EDOF
- Photic phenomena
- Less near vision
Refractive Cataract Surgery: Extended depth of focus (EDOF)

- Refractive: Comfort (low add refractive)
 - Bifocal +1.5 add
 - Improved intermediate vision
Refractive Cataract Surgery: Extended depth of focus (EDOF)

- Refractive + Diffractive + spherical aberration: SAV-IOL (Swiss Advanced Vision)
 - Lucidis & Eden
 - → central aspheric (Lucidis)
 - → 6mm refractive (Lucidis)
 - → Lucidis + 3.5mm diffractive (Eden)
Refractive Cataract Surgery: Extended depth of focus (EDOF)

- Pin-hole: IC-8 IOL
 - → irregular cornea
 - → increased depth of focus
 - → 1.36mm central aperture
 - → good distance, intermediate and near vision
 - → similar to Kamra inlay
 - → Possible for post-refractive, irregular corneas, monofocal pseudophakia
Refractive Cataract Surgery: Extended depth of focus (EDOF)

- Spherical aberration
- Diffractive
- Refractive
- Pin-hole
 - not enough for reading vision
 - elongated focus distance to enhance intermediate and near vision
 - less glare and halos compared to multifocal
 - Solution: mini-monovision, mix & match
Refractive Cataract Surgery: Multifocality

- Diffractive optics
- Refractive optics
 - Bifocal
 - → functional distance & near vision
 - Trifocal diffractive
 - → functional distance, near & intermediate vision
Optical aberrations: glare & halo

Monofocal

EDOF

Multifocal
Optical aberrations: distance vision

Monofocal EDOF Multifocal
Optical aberrations: intermediate vision

Monofocal EDOF Multifocal
Optical aberrations: near vision

Monofocal EDOF Multifocal
Refractive pearls for the cataract surgeon

- Multifocal?
- Monovision (with spherical or aspherical IOL??)
- Extended depth of focus?
- Accomodative (current technology not sufficient)
Multifocal IOL vs Monofocal IOL
Cochrane study (2016)

- distance VA: little difference to monofocal
- Near VA: multifocal better outcome
- Glare and halo’s: more in multifocal
- Patient less spectacle dependent with multifocal

- ECCE / Can-opener
- IOL used Refractive / Diffractive (older models: Array-Rezoom-3M)
Multifocal IOL: safety

- ESCRS-ASC RS explantation study (Mammalis, 2008)
 - Multifocal: 24% (10% market)
 - glare & halos
 - Monofocal: 76% (90% market)
 - decentration / dislocation / incorrect power
Multifocal IOL vs Monovision: Cochrane study (2016)

- 2 studies
- No difference for UCVA-distance-intermediate and near
- Multifocal less likely to be spectacle dependent (especially for near)
- Contrast sensitivity
 - marginally better in Monovision (1 study)
 - Same in other study
- More glare in multifocal
- Multifocal more IOL-exchange (6 eyes vs 0 in first year)
Multifocal IOL

- Critical success factors:
 - Achieving emmetropia
 - Correction of astigmatism
 - Arcuate incisions
 - Toric IOL
 - Centration
 - Patient motivation
ASTIGMATISM MANAGEMENT: TORIC IOL

- 20% 1.5D astigmatism
- 10% 2D or more astigmatism

Toric IOL

Standard IOL + >1 diopter of astigmatism
Refractive Cataract Surgery

- Target is to achieve emmetropia
- Choice of lens material & design
- Correct IOL-calculation
 - corrects spherical equivalent
- Small incision surgery
 - minimises induced astigmatism
- Correction of astigmatism
 - Toric IOL
- Correction of presbyopia
 - multifocality
 - Mini-monovision EDOF
 - Monovision
Many options to choose: your decision!!

THANK YOU